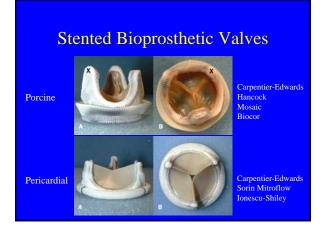


Scott Streckenbach, M.D. Director of Perioperative Echocardiography Massachusetts General Hospital Harvard Medical School

Lecture Outline

- Prosthetic Valve Construction
- Echo characteristics of PVs
- Intraoperative Assessment of PVs
- 10 General Principles


Stented Bioprosthetic Valves: Porcine

Carpentier Edwards Med Hancock Med Mosaic SJM Biocor

Stented Bioprosthetic Valve: Porcine

- 1. Valve tissue
 - Porcine Ao Valve(s)
- 2. Frame (Stent)
 - <u>Elgiloy Struts</u> (3) serve as commissure supports*
- 3. Sewing ring
 - Suture ring (e.g., soft silicone rubber) for stitches
 - Cloth covering (PTFE or Dacron) to promote endothelial encapsulation

C-E PERIMOUNT Magna and Magna Ease

- Supra-annular design
- "Enables up to 23% greater EOA"
- State of the art tissue treatment eliminates up to 98% of calcium binding sites

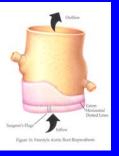
<text><list-item><list-item><list-item> <section-header> • Supra-annular • Sizer should be parallel or the plane of the annulus and the lip of the sizer sits in a suprannular position. • Intra-annular • Intra-annular • Entire sizer and lip should fit in the annulus

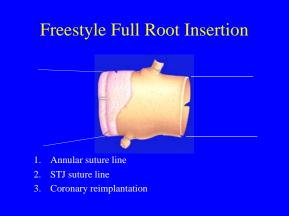
Stented Bioprosthetic Valve: Sorin Mitroflow Valve

- Mounting of pericardium outside the stent allows for unimpeded leaflet opening
- Supra-annular or intra-annular placement
- Only approved in US for AV position

Stentless Bioprosthetic Valves

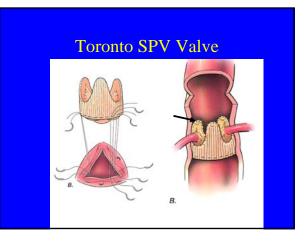
- Allow valve 1-2 sizes larger
- Increased EOA
- Decreased Gradient
- Theoretically less stress on leaflets
- However more complicated surgery


Stentless Bioprosthetic Valves


- Medtronic Freestyle—porcine (A)
- St Jude Toronto SPV—porcine (B)
- ATS 3f—equine pericardial

Medtronic Freestyle Valve

- Porcine Aortic Root
- No Stent
- Dacron ring
- 4 insertion options



Insertion steps 1. Excise R & L sinuses 2. Inflow suture line 3. Seat the bioprosthesis 4. Outflow suture line **Note stitch issues

St Jude Toronto SPV Valve

- Porcine valve
- Stentless subcoronary design
- One insertion option
- ST Junction size determines valve size
- Vulnerable to root dilation

Medtronic ATS 3f—Pericardial Stentless Valve

- Three equine pericardial leaflets shaped in the form of a tube
- Less complex implant technique
 - Annular suture line
 - 3 commissural stitches

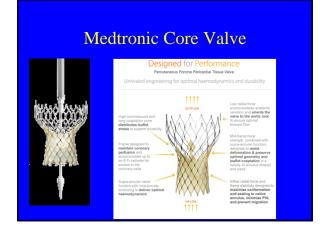
Medtronic ATS 3f Enable Valve

- First sutureless valve
- Bioprosthesis within a self-expanding nitinol frame
- Should decrease surgical time and XC period
- In European clinical trials

Transcatheter Bioprosthetic **Aortic Valves**

- Edwards SAPIEN valve
- Medtronic CoreValve (not FDA approved)

Edwards Transcatheter/Apical Aortic Valve

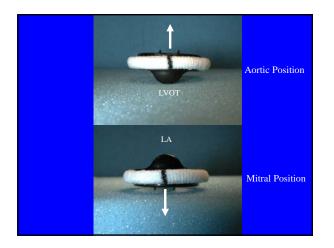


ards SAPIEN THY Bovine Pericardial Tis
23 and 26mm Valves ThermaFix Process Leaflet Matching Technology

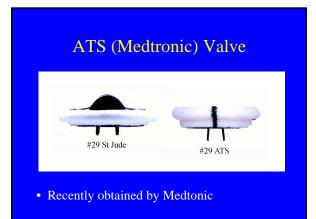
Edwards Transcatheter Sapien Aortic Valve Catheter inserted across AV Slide valve into position Rapid V-pacing Inflate balloon to open valve

- 4. 5.

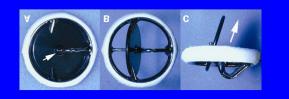
4


Mechanical Valves

<u>Bileaflet</u>	Single leaflet	<u>Ball-cage</u>
St Jude	Medtronic-Hall	Starr-Edward
Carbomedics (Sorin)	Bjork-Shiley	
ATS (Medtronic)	Omniscience	


St Jude Valve

- 2 semicircular leaflets attached to a midline hinge
- Hinge above sewing ring (pivot guard)
- Leaflets move from 30 to 85 degrees (55 degree travel arc)
- Typically rotatable
- AVs and MVs



Medtronic Hall Valve

- Opening arc is restricted (55-70 degrees)
- Creates a major and minor orifice
- Closure occurs by backpressure on valve disc

Medtronic Hall in motion

Bjork-Shiley Valve

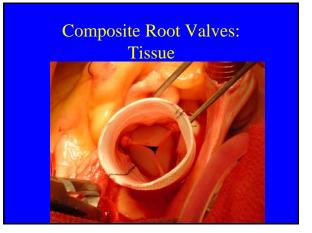
- Discs held in place by two metal struts (inflow and outflow)
- Standard design very durable
- Convexo-Concavo valve subject to extensive recall in 1986*

Starr Edwards Valve

- Stellite alloy double cage
- Silicone rubber poppet
- Teflon/polypropylene cloth sewing ring

• High profile

- High gradient
- High risk thrombosis

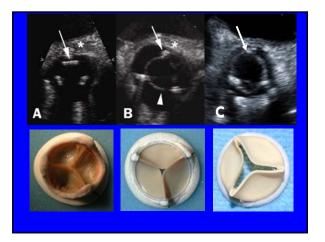

Profile=height from base to top of struts

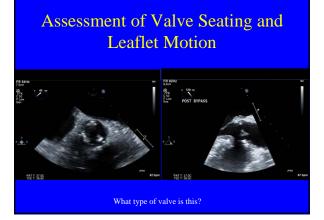
Weyman, Principles and Practice of Echocardiography

Composite Root Valves: Mechanical

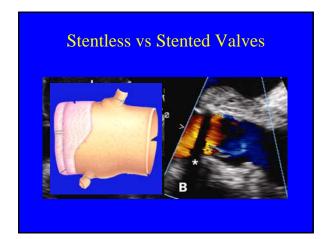
Homograft

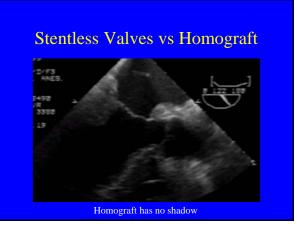
- Human cadaveric aortic and pulmonary valves
- Cryopreserved
- No Stent or Dacron ring
- Good for aortic root abscess Tx

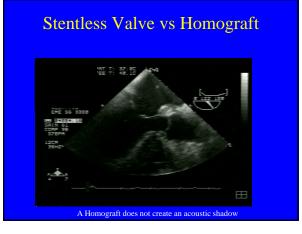


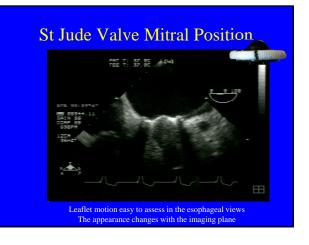

Echo Assessment of Prosthetic Valves

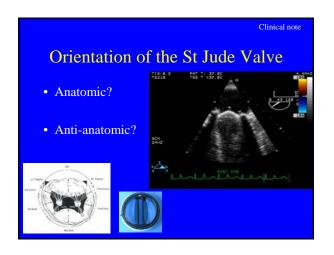
- 2-D
- Color Doppler
- Hemodynamics
- Look for Collateral Damage

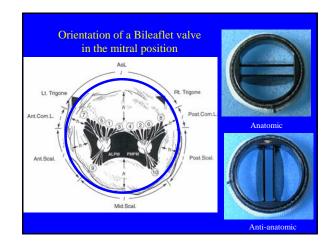

Step 1: 2-D Exam

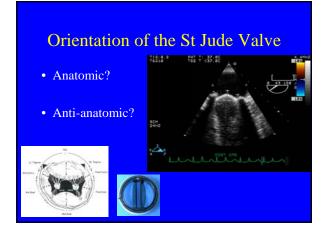

- What type of valve is it?
- Is the valve well-seated?
- Are the leaflets moving appropriately?
- Are there any extraneous masses present?

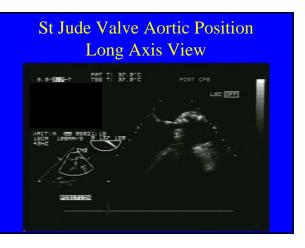


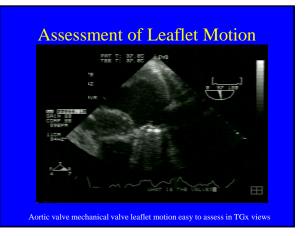




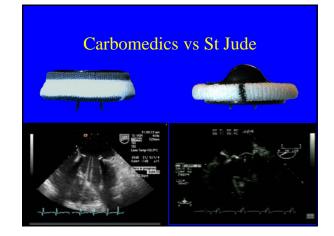


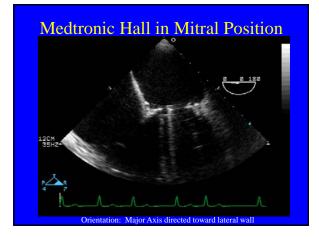


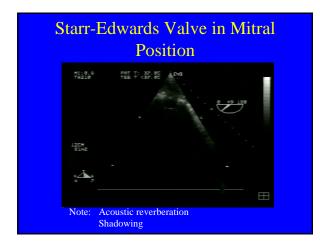


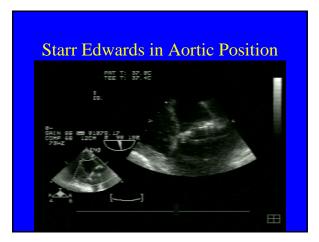


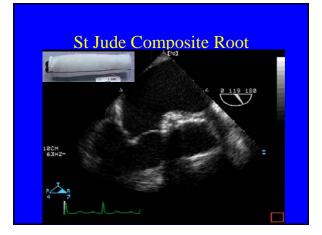


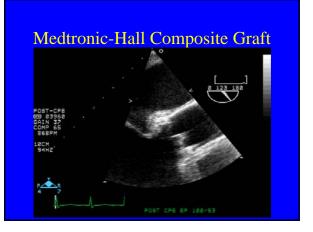


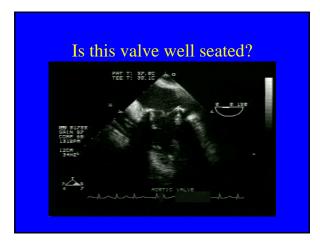





Medtronic Hall in Aortic Position





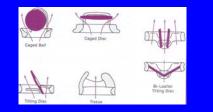


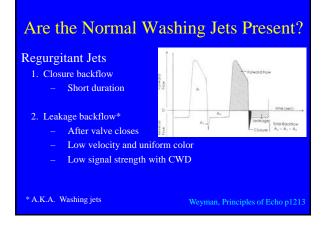
Review Step 1: 2-D Exam

- What type of valve is it?
- Is the valve well-seated?
- Are the leaflets moving appropriately?
- Are there any extraneous masses present?

What kind of valve is this?

Step 2: Color Doppler

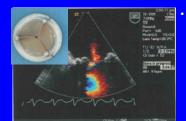

- Does the antegrade flow look normal?
- Are the normal washing jets present?
- Is there any intravalvular pathologic regurgitation?
- Is there a paraprosthetic leak?


Color Doppler Exam Essentials

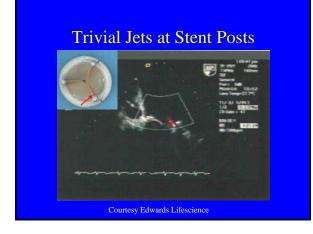
- 1. Wide enough sector to see outside sewing ring
- 2. Omniplane 0-180 degrees
- 3. If confused: Freeze—slow motion replay

Is the Antegrade Flow Profile Normal?

- Limited turbulence
- Symmetric flow with most valves


Bioprosthetic Regurgitation

- Should be minimal
- Occasionally occurs between leaflet edges
- More with C-E Perimount/Magna valves than porcine aortic valve or Mitroflow valve



Mild Central MR

Trace to mild central or commissural jets are commonly seen with mitral PERIMOUNT valves and are clinically insignificant

Courtesy Edwards Lifescience

Other Flow Patterns: Leakage through Cloth

- Occasionally seen on *both* porcine and pericardial valves
- Originates from base of stent
 post
- May see more than one symmetrical jet depending on view
- Unlike signature flow patterns, these jets have been observed to resolve intraoperatively following protamine

Courtesy Edwards Lifescience

Leakage through Cloth Pre-protamine Two symmetric commissural jets are noted

Jets are low velocity, mild

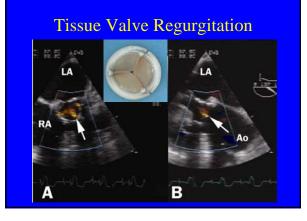
Number and direction of jets will vary depending on view

Courtesy Edwards Lifescience

C-E Pericardial Valves

• Commissural leaks and cloth leakage jets typically improve after time and protamine

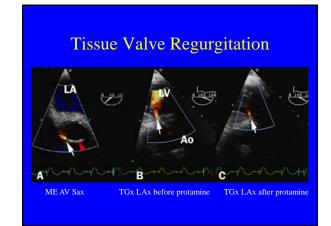
Post-protamine

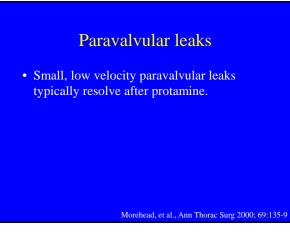

Four jets visible, magnitude greatly reduced from pre-protamine view

Leakage through Cloth

- Post-protamine, 2 min later
- Commissural jets not apparent
- Only tiny central jet apparent

Courtesy Edwards Lifescience




Courtesy Edwards Lifescience

Aortic Pericardial Valve Small Valvular Leak

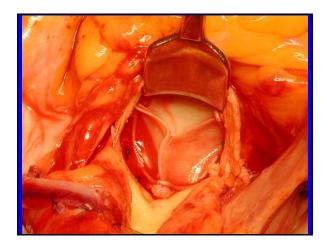
Abnormal Flow Patterns Associated with the C-E Pericardial valves

- Large, high velocity paravalvular leaks
- Eccentric jets (may be result of oversizing)
- Moderate or greater MR (may be result of suture looping, oversizing, or interference by subvalvular apparatus)

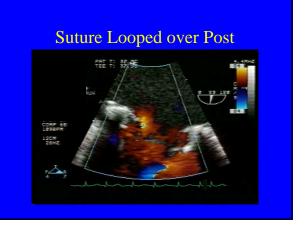
Courtesy Edwards Lifescience

Abnormal Flow: Moderate MR

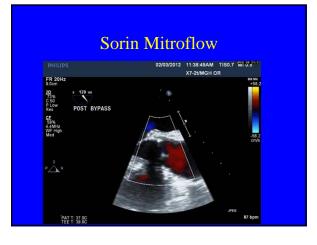
Moderate (2+ or greater) MR is not normal flow for PERIMOUNT valves

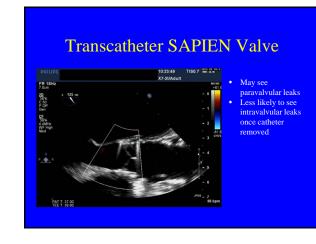

Courtesy Edwards Lifescience

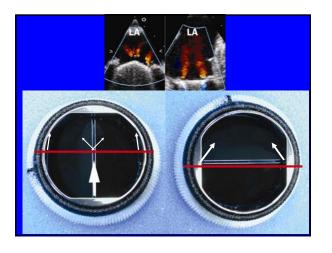
Abnormal Flow: Oversizing Courtesy Edwards Lifescience

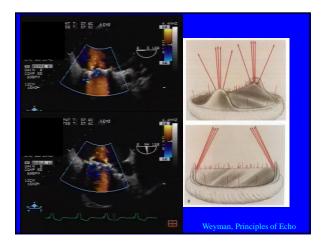

Eccentric jets noted on echo

- Severity of eccentric jets often underestimated
- explanted, found to be severely distorted at implant

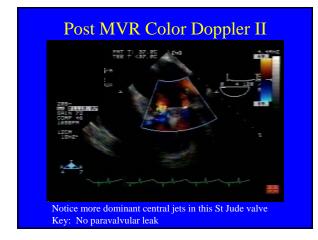


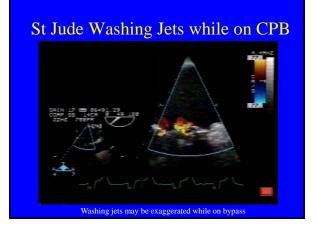


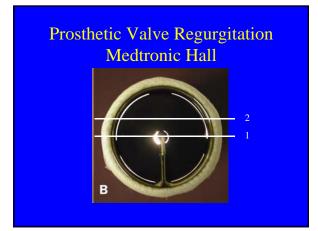


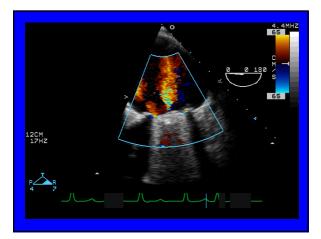


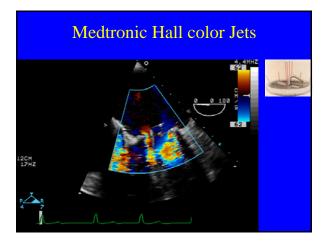
Two Key Principles Regarding Washing Jets for Mechanical Valves

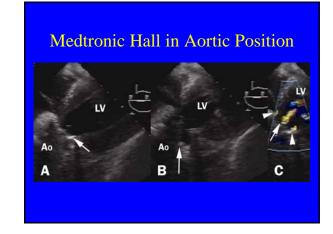

- Dependent on the valve type
- Dependent on the imaging plane

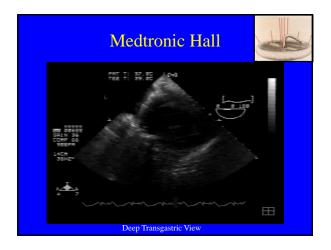


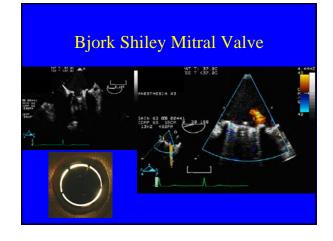


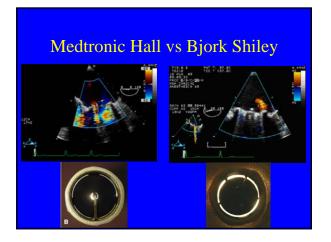


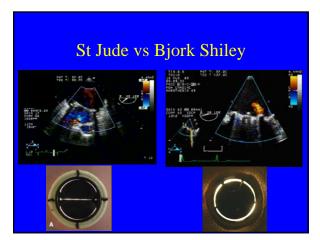


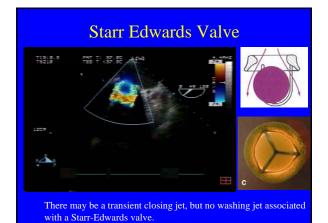












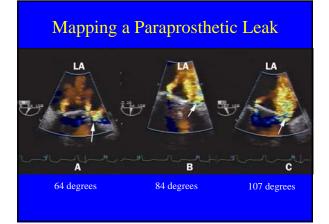
Summary of Mechanical Valve Washing Jets

• St Jude

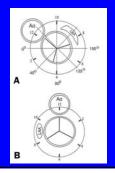
• Bjork Shiley

• Starr Edwards

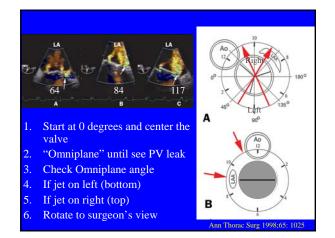
1 leaflet: 2 lateral jets 2 leaflets: small central and lateral jets • Medtronic Hall 1 large central jet, 2 lateral 2 lateral jets 2 curved closing jet no washing jets


Normal vs Pathologic Regurgitation

- Normal (expected) Regurgitation Short duration
 - Low velocity and uniform color
 - Low signal strength with CWD
- Pathologic Regurgitation
 - Deeply penetrating jets High velocity


 - Non-homogenous jets
 PISA in the proximal chamber
 Anything outside the sewing ring

Intraprosthetic vs Paraprosthetic?


- Use multiple views
- Use color suppress
- Use zoom and slow motion replay
- 3-D

Mitral Valve Mapping

Mapping the Paravalvular leak: Isselbacher, Foster, Picard, et al. Ann Thorac Surg 1998;65: 1025 Also see my handout

Review Step 2: Color Doppler

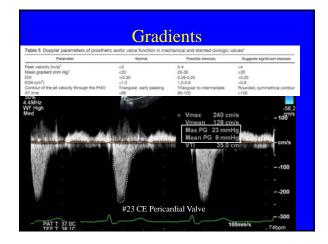
- Does the antegrade flow look normal?
- Are the normal washing jets present?
- Is there any intravalvular pathologic regurgitation?
- Is there a paraprosthetic leak?

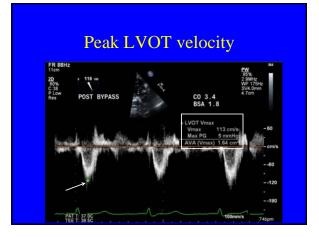
Step 3: Hemodynamics

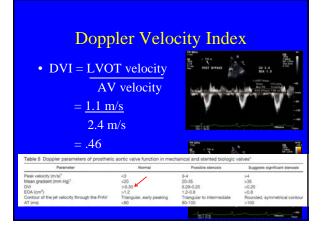
- Valve Specific Assessment
 - Velocity
 - Gradients
 - Area calculation

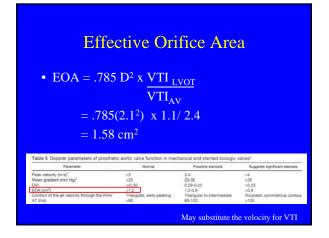
Hemodynamics: Aortic Valve

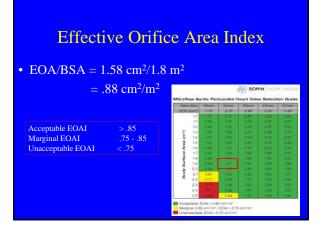
- Peak Velocity
- Peak and Mean Gradient
- Doppler Velocity Index (DVI)
- Effective Orifice Area (EOA) and Index (EOAI)


ASE PV Guidelines Document Assessment of Prosthetic AV stenosis

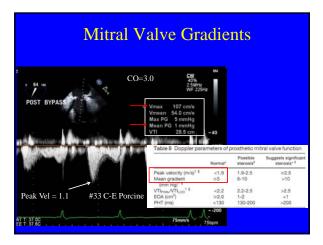

1000 000 000 000 000 000 000 000 000 00	Normal	Possible stanosis	Suggests significant sterools
Peak velocity (m/s) [†]	4	3-4	34
/lean gradient (mm Hg)*	<20	20-35	>35
2/1	≥0.30	0.29-0.25	<0.25
OA (cm ²)	>1.2	1.2-0.8	<0.8
Contour of the jet velocity through the PrAV AT (ms)	Triangular, early peaking <80	Triangular to intermediate 80-100	Rounded, symmetrical contou >100

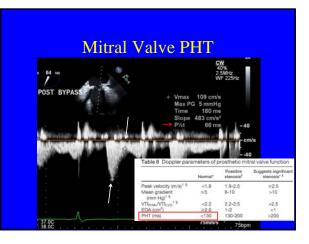

Post Aortic St Jude Valve Transgastric View with CWD




Parameter	Normál	hanical and stented biologic v Possible stenosis	Suggests significant sterools
Peak velocity (m/k)" Mean gradient (mm Hg)" CVI ECA (om ²) Contour of the jet velocity through the PrAV AT (ms)	<3 <20 ≥0.30 >1.2 Triangular, early peaking <80	3-4 20-35 0.29-0.25 1.2-0.8 Triangular to intermediate 80-100	>4 >35 <0.25 <0.8 Rounded, symmetrical conto >100
Res POST BYPASS CF 50% 4.4MHz We High Med		CO 3.4 BSA 1.8 + AV Vmax Vmax 239 cm/s Max PG 23 mmHg	-56.2 - 108 ⁷⁷⁴
			- cm/s - 100

Peak velocity (m/s) ¹ <3 3-4 Mean gradient (mm Hg) ¹ <20 20-35	
	54
	>35
DVI 20.30 0.29-0.25	<0.25
EOA (cm ²) >1.2 1.2-0.8	<0.8
Contour of the jet velocity through the PrAV Triangular, early peaking Triangular to intermediate AT (ms) c80 80-100	Rounded, symmetrical contour >100
PAV, Prosthetic sortic valve. "In conditions of normal or near normal stroke volume (50-70 mL) through the sortic valve. These parameters are more affected by flow. including concomitant AR.	

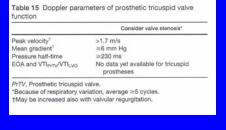

		endiz	\mathbf{A}	
Appendix A. Normal Doppler Er				
Valve	Slat	Peak gradient (mm Hg)	Mean gradient (mmHg)	Effective orifice area (cm ²)
ATS Bilogfet	19 21 25 27 29	47.0± 12.6 23.7± 6.8	25.3± 8.0 15.9± 5.0 14.4± 4.9 11.3± 3.7 8.4± 3.7 8.0± 3.0	1.1=0.3 1.4±0.5 1.7±0.5 2.1±0.7 2.5±0.1 3.1=0.8
ATS AP Bilougher	18 20 22 24 28	21.4+ 4.2 18.7+ 8.3 15.1+ 5.6	21.0+1.8 11.1+3.5 10.5±4.5 7.5±3.1 6.0±2.0	1.2 = 0.3 1.3 ± 0.3 1.7 ± 0.4 2.0 ± 0.6 2.1 = 0.4
Baster Peristiourit Stented bestine pericurdial	19 21 23 25 27	32.5±8.5 24.9±7.7 19.9±7.4 16.5±7.8 12.8±5.4	19.5±5.5 13.8±4.0 11.5±3.9 10.7±3.8 4.8±2.2	1.3± 0.2 1.3± 0.3 1.6± 0.3 1.6± 0.4 2.0± 0.4
Biocor Stented porcine	23 25 27	30.0+ 10.7 23.0+ 7.9 22.0+ 6.5	20± 6.6 16± 5.1 15.0± 3.7	1.3± 0.3 1.7± 0.4 2.2± 0.4
Extended Biocor Stentless	19-21 23 25	17.5±6.5 14.7±7.3 14.0±4.3	9.6x 3.6 7.7± 3.8 7.4± 2.5	1.4+0.4 1.7=0.4 1.5=0.4
Bioflo Stented bovine pericardial	19 21 21	14,01 4.3 37,24 8.8 28,74 6.2 38,9± 11.9	7.41.2.5 26.41.5.5 18.74.5.5 21.8+3.4	1.5±0.4 0.74.0.1 1.1±0.1 1.1±0.3


Hemodynamics: Mitral Valve

- Peak Velocity
- Peak and Mean Gradient
- Pressure Half-Time (PHT)
- Effective Orifice Area (EOA)

ASE PV Guidelines Document Assessment of Prosthetic Mitral Valves

	Normal*	Possible stenosis ⁸	Suggests significant stenosis* ¹
Peak velocity (m/s) ^{† 5}	<1.9	1.9-2.5	≥2.5
Mean gradient (mm Hg) ^{r \$}	≲5	6-10	>10
VTIme VTILVO ^{7 S}	<2.2	2.2-2.5	>2.5
EOA (cm ²)	≥2.0	1-2	<1
PHT (ms)	<130	130-200	>200
parameters listed are no Slightly higher cutoff vo thetic valves.			



Valve	Size	Peak gradient (mm Hg)	Mean gradient (mm Hg)	Peak velocity (m/s)	Pressure half-time (ms)
Carpentier- Edwards	29		4.7 ± 2	1.76 ± 0.27	92 ±14
Stented bioprosthesis	31 33		4.4 ± 2 6 ±3	1.54 ± 0.15	92 ± 19 93 ± 12
	27		3.6	1.6	100
Carpentier- Edwards pericardial	29		5.25 ± 2.36	1.67 ± 0.3	110 ± 15
Stented Bioprosthesis	31		4.05 ± 0.83	1.53 ± 0.1	90 ± 11
	33		1.0	0.8	80

Hemodynamics: Tricuspid Valve

- Peak Velocity
- Mean Gradient
- Pressure Half-Time (PHT)

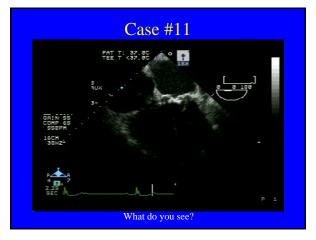
ASE PV Guidelines Document: Assessment of Prosthetic TV stenosis

JASE 2009; 22(9):1001

Review Step 3: Hemodynamics

- Valve Specific Assessment
 - Velocity
 - Gradients
 - Area calculation
- Use ASE PV Guidelines Document

Echo Assessment of Prosthetic Valves


- 2-D
- Color Doppler
- Hemodynamics
- Look for Collateral Damage

Step 4: Rule Out Collateral Damage

- Non-operative valve damage
 - Suture through AML during AVR
 - Suture through the AV during MVR
- Coronary obstruction
 - Valve too large in aortic positionMisplaced suture
- LV or RV dysfunction
- VSD
- LVOT obstruction
- High profile tissue valve in mitral position
- LV rupture

Case #11

- 74 yo woman s/p bioprosthetic valve 13 years ago
- Presented with CHF



Case #11

- #27 mm Medtronic Mosaic valve inserted into mitral position
- PFO closed
- While warming, after cardiac rhythm returned, noted a lot of ejection
- What is the differential?

Clinical Prosthetic Valve Exam Post-Bypass

- 1. Sewing ring well-seated
- 2. Leaflet(s) demonstrate normal excursion
- 3. Normal valvular leak present
- 4. No *significant* pathologic valvular or paravalvular leak (0-180 degrees)
- 5. Hemodynamics (grad, velocities, EOA, etc)
- 6. R/O collateral damage

10 General Principles

- Know the prosthetic valves used in your hospital (2D and washing jet pattern)
- Record baseline (pre-bypass) loops of all cardiac structures
- Listen to/watch the surgeons during bypass period
- Begin post-op assessment BEFORE separation from bypass

10 General Principles

- Use ME LAx view during de-airing
- Become an expert at obtaining TGx views
- Use zoom and slow motion replay
- Get a second opinion if any question
- Have a copy of the HDs reference in OR
- Use the same exam sequence every time

Summary

What should you do if you really want to become an expert in Prosthetic Valve

Assessment?

- 1. Read a comprehensive chapter on Prosthetic Valves
- 2. Get samples of the different valve types and study their construction and mechanism

 Read the ASE Guidelines for Prosthetic Valve Assessment JASE 2009

